Rheotaxis of Bimetallic Micromotors Driven by Chemical-Acoustic Hybrid Power.
نویسندگان
چکیده
Rheotaxis is a common phenomenon in nature that refers to the directed movement of micro-organisms as a result of shear flow. The ability to mimic natural rheotaxis using synthetic micro/nanomotors adds functionality to enable their applications in biomedicine and chemistry. Here, we present a hybrid strategy that can achieve both positive and negative rheotaxis of synthetic bimetallic micromotors by employing a combination of chemical fuel and acoustic force. An acoustofluidic device is developed for the integration of the two propulsion mechanisms. Using acoustic force alone, bimetallic microrods are propelled along the bottom surface in the center of a fluid channel. The leading end of the microrod is always the less dense end, as established in earlier experiments. With chemical fuel (H2O2) alone, the microrods orient themselves with their anode end against the flow when shear flow is present. Numerical simulations confirm that this orientation results from tilting of the microrods relative to the bottom surface of the channel, which is caused by catalytically driven electro-osmotic flow. By combining this catalytic orientation effect with more powerful, density-dependent acoustic propulsion, both positive and negative rheotaxis can be achieved. The ability to respond to flow stimuli and collectively propel synthetic microswimmers in a directed manner indicates an important step toward practical applications.
منابع مشابه
Understanding the efficiency of autonomous nano- and microscale motors.
We analyze the power conversion efficiency of different classes of autonomous nano- and micromotors. For bimetallic catalytic motors that operate by a self-electrophoretic mechanism, there are four stages of energy loss, and together they result in a power conversion efficiency on the order of 10(-9). The results of finite element modeling agree well with experimental measurements of the effici...
متن کاملA tale of two forces: simultaneous chemical and acoustic propulsion of bimetallic micromotors.
Bimetallic gold-ruthenium microrods are propelled in opposite directions in water by ultrasound and by catalytic decomposition of hydrogen peroxide. This property was used to effect reversible swarming, to stall and reverse autonomous axial propulsion, and to study the chemically powered movement of acoustically levitated microrods.
متن کاملDensity and Shape Effects in the Acoustic Propulsion of Bimetallic Nanorod Motors.
Bimetallic nanorods are propelled without chemical fuels in megahertz (MHz) acoustic fields, and exhibit similar behaviors to single-metal rods, including autonomous axial propulsion and organization into spinning chains. Shape asymmetry determines the direction of axial movement of bimetallic rods when there is a small difference in density between the two metals. Movement toward the concave e...
متن کاملSmall power: Autonomous nano- and micromotors propelled by self-generated gradients
In this article we review the development, current status and future prospects of nano-and microscale motors propelled by locally generated fields and chemical gradients. These motors move autonomously in fluids by converting different sources of energy into mechanical work. Most commonly they are particles that are similar in their largest dimensions to bacteria (a few microns) or eukaryotic c...
متن کاملHighly Efficient Light-Driven TiO2-Au Janus Micromotors.
A highly efficient light-driven photocatalytic TiO2-Au Janus micromotor with wireless steering and velocity control is described. Unlike chemically propelled micromotors which commonly require the addition of surfactants or toxic chemical fuels, the fuel-free Janus micromotor (diameter ∼1.0 μm) can be powered in pure water under an extremely low ultraviolet light intensity (2.5 × 10(-3) W/cm(2)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 11 10 شماره
صفحات -
تاریخ انتشار 2017